Phase I/II Study of TP-3654, a Selective Oral PIM1 Kinase Inhibitor, in Patients with Myelofibrosis Previously Treated with or Ineligible for JAK Inhibitor Therapy

Firas El Chaer MD1, James McCloskey MD2, Lindsay AM Rein, MD3, Randy A Brown MD4, Steven D Green MD5, Jeffrey J Pu MD PhD6, Shuichi Shirane MD PhD7, Kazuya Shimoda MD PhD8, Michiko Ichii MD PhD9, Junichiro Yuda MD PhD10, Joseph Scandura MD PhD11, Sujan Kabir MD12, Jason M Foulks PhD13, Jian Mei PharmD12, Huyuan Yang PhD12, Mark Wade PhD12, Carl Stapinski12, Claudia Lebedinsky MD12, and Raajit K Rampal MD PhD14

1University of Virginia Health System, VA; 2The John Theurer Cancer Center at Hackensack Meridian Health, NJ; 3Duke University Medical Center, NC; 4Shands HealthCare & University of Florida, FL; 5Roswell Park Comprehensive Cancer Center, NY; 6University of Arizona Cancer Center, AZ; 7Juntendo University School of Medicine, Tokyo, Japan; 8University of Miyazaki, Miyazaki, Japan; 9Osaka University Graduate School of Medicine, Suita City, Japan; 10National Cancer Center Hospital East, Kashiwa, Japan; 11Richard T. Silver, Weill Cornell Medicine, NY; 12Sumitomo Pharma Oncology, Inc., MA; 13Sumitomo Pharma Oncology, Inc., UT; 14Memorial Sloan Kettering Cancer Center, NY
Myelofibrosis: Background & Evolving Treatment Landscape

- JAK inhibitors, current standard of care treatment, are limited by thrombocytopenia, anemia, and lack of disease modifying effects\(^1\)
 - Most patients have either inadequate response, or eventually lose response to JAK inhibitors
 - Patients with cytopenia or who have progressed from JAK inhibitors have poor prognosis
 - Anemia and thrombocytopenia are common and prevents JAK inhibitor dose optimization
- Novel therapies with unique MOA are needed for MF patients who have progressed from JAK inhibitors and/or have cytopenia
- Evolving treatment landscape includes doublet combination regimen; however, are challenged by overlapping toxicities including cytopenia\(^2\)
- An ideal combination partner should have disease modifying effects and minimal cytopenia, in addition to spleen reduction and symptoms improvement

Background: PIM1 Kinase Signaling

- PIM1 is a proto-oncogene regulated in part through the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway.

- PIM1 kinase also has an essential role in cytokine-induced signal transduction by controlling transcription factors.

- Upregulation of PIM1 kinase leads to increased cytokines relevant to immune activation and fibrosis including RANTES and TGF-β.

Adapted from Zhang et al 2018. Used with permission from the Creative Commons License.
PIM1 Kinase: A Novel Target in MF

- PIM1 expression was shown to be significantly increased in MF patients’ bone marrow and PBMC samples

- PIM1 knockout was shown to prevent myelofibrosis progression, but PIM2 knockout has no effect in MF mouse models

- PIM1 knockout was shown not to cause platelet count decrease, while pan-PIM knockout resulted in thrombocytopenia in mice

- Novel therapies which selectively inhibit PIM1 kinase may provide disease-modifying benefits for MF patients while avoiding cytopenia adverse effects

4. Dutta et al. Leukemia 2021
5. An et al. JH&O, 2013
TP-3654: An Oral Selective PIM1 Inhibitor in Murine MPLW515L MF Model

- ✓ Spleen Size Reduction
- ✓ Bone Marrow Fibrosis Reduction
- ✓ Overall Survival Increase

- Similar TP-3654 activity was observed in murine JAK2V617F MF model4

**p<0.005
TP-3654 Phase I/II Study Design in MF

Key Eligibility
- DIPSS Intermediate-1, 2, or high-risk
- Platelet count $\geq 25 \times 10^9$/L
- ECOG ≤ 2
- Splenomegaly (volume of ≥ 450 cm3)
- At least 2 symptoms by MF-SAF v4.0

Endpoints
- **Primary:**
 - Safety and tolerability
- **Secondary**
 - Spleen volume reduction
 - Total symptoms score reduction (MF-SAF v4.0)
 - Overall survival
 - Bone marrow fibrosis change
 - Pharmacokinetics
TP-3654 Phase 1: Baseline Characteristics

Patient Characteristics, n=9

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (range)</td>
<td>71 years (61 - 77)</td>
</tr>
<tr>
<td>Spleen length, median (range)</td>
<td>12 cm (0 - 25)</td>
</tr>
<tr>
<td>Spleen volume, median (range)</td>
<td>2231 cm³ (857 - 4407)</td>
</tr>
<tr>
<td>Total Symptoms Score
(MF- SAF v4.0), median (range)</td>
<td>18 (4 - 62)</td>
</tr>
<tr>
<td>Platelet count, median (range)</td>
<td>120 x10⁹/L (68 - 237)</td>
</tr>
<tr>
<td>≥ 100 x10⁹/L</td>
<td>6 (66%)</td>
</tr>
<tr>
<td>< 100 x10⁹/L</td>
<td>3 (33%)</td>
</tr>
<tr>
<td>Hemoglobin, median (range)</td>
<td>10.1 g/dL (5.9 - 13.7)</td>
</tr>
<tr>
<td>≥ 10 g/dL</td>
<td>5 (56%)</td>
</tr>
<tr>
<td>< 10 g/dL</td>
<td>4 (44%)</td>
</tr>
<tr>
<td>Transfusion dependent</td>
<td>2 (22%)</td>
</tr>
</tbody>
</table>

Disease Characteristics, n=9

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myelofibrosis subtypes</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>4 (44%)</td>
</tr>
<tr>
<td>Post-PV</td>
<td>4 (44%)</td>
</tr>
<tr>
<td>Post-ET</td>
<td>1 (11%)</td>
</tr>
<tr>
<td>DIPSS Risk Group</td>
<td></td>
</tr>
<tr>
<td>Int-1</td>
<td>3 (33%)</td>
</tr>
<tr>
<td>Int-2</td>
<td>4 (44%)</td>
</tr>
<tr>
<td>High</td>
<td>2 (22%)</td>
</tr>
<tr>
<td>Driver Mutations</td>
<td></td>
</tr>
<tr>
<td>JAK2V617F</td>
<td>7 (78%)</td>
</tr>
<tr>
<td>CALR</td>
<td>2 (22%)</td>
</tr>
<tr>
<td>Prior Treatment n(%)
median duration (range)</td>
<td>9 (100%), 33 weeks (10 - 268)</td>
</tr>
<tr>
<td>Ruxolitinib</td>
<td>2 (22%), 36 weeks (36 - 49)</td>
</tr>
<tr>
<td>Fedratinib</td>
<td></td>
</tr>
<tr>
<td>Response to JAK Inhibitors</td>
<td></td>
</tr>
<tr>
<td>Primary refractory</td>
<td>3 (33%)</td>
</tr>
<tr>
<td>Loss of response</td>
<td>4 (44%)</td>
</tr>
<tr>
<td>Intolerant</td>
<td>2 (22%)</td>
</tr>
</tbody>
</table>

Preliminary data as of 11-OCT-2022
No DLT or related serious AE.

The most common AEs are Grade 1 diarrhea, nausea, and vomiting, and transient resolving within 1-2 weeks.

Transient Grade 3 anemia and thrombocytopenia were observed in 1 patient.

No dose reduction or discontinuation due to AE.

*G3 Bilirubin and G3 Anemia from a patient with baseline G2 bilirubin and transfusion-dependent.
TP-3654: Stable Lab Values in the Dose Escalation with No Worsening of Blood Counts

Platelet Count During Treatment
Hemoglobin During Treatment
Neutrophil During Treatment

*N=9; Mean ± SD

Preliminary data as of 11-OCT-2022
TP-3654: Best Spleen Volume Response in Dose Escalation

- 8 evaluable patients on treatment ≥ 12 weeks
- Baseline spleen volume median 2535 cm3 (1189 to 4407)
- 6 of 8 have SVR
 - Median -11%
 - 5 of 8 patients have ≥ 10% SVR
 - 2 of 8 patients have ≥ 35% SVR

Individual Patients

- **Dose**
 - 480mg QD
 - 720mg QD
 - 360mg BID
 - 480mg BID
 - 720mg BID

Response to JAK Inhibitor:
- \times = Primary Refractory
- \star = Loss of Response
- $-$ = Intolerant

Preliminary data as of 11-OCT-2022
TP-3654: Best Symptoms Response in Dose Escalation

- MF-SAF v4.0 (Max TSS 70): Baseline symptom burden median 21 (4 to 62)
- 8 evaluable patients on treatment ≥ 12 weeks
- 7 of 8 have TSS reduction
 - Median -66%
 - 5 of 8 patients have ≥ 50% TSS reduction

Individual Patients

<table>
<thead>
<tr>
<th>Dose</th>
<th>480mg QD</th>
<th>720mg QD</th>
<th>360mg BID</th>
<th>480mg BID</th>
<th>720mg BID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to JAK Inhibitor:</td>
<td>≠ Primary Refractory</td>
<td>≠ Loss of Response</td>
<td>≠ Intolerant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preliminary data as of 11-OCT-2022
TP-3654: Duration of Treatment

- No discontinuation due to AE

Reasons for Discontinuation
- Physician Withdrawal (2)
- Progression (2)
- Patient Withdrawal (1)

Preliminary data as of 11-OCT-2022
TP-3654: PIM1 Inhibition Leads to Early Reduction in Cytokines

- Cytokine reduction observed as early as Week 4 from initial dose cohorts
- Cytokine reduction generally correlate with TSS reduction
- Cytokines associated with MF (IL-6, IL-10, IL-12, IL-18, TGF-b, EGFR, Ferritin, GRO-a, IL-1RA, MMP-9, PAI-1, RANTES, TIMP-1, TNFR-2, VCAM-1) show reduction after treatment

Cytokine change relative to baseline

<table>
<thead>
<tr>
<th>Cytokine change relative to baseline</th>
<th>>0 - 25%</th>
<th>>25 - 50%</th>
<th>>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase</td>
<td>>0 - 25%</td>
<td>>25 - 50%</td>
<td>>50%</td>
</tr>
<tr>
<td>No change</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preliminary data as of 11-OCT-2022
Conclusions: TP-3654 an Oral Selective PIM1 Inhibitor for MF

- PIM1, a novel target in MF, is a proto-oncogene regulated in part through the JAK / STAT, ERG and NF-kB pathways and modulates multiple downstream signaling pathways including induction of cytokines RANTES and TGF-B.

- PIM1 kinase inhibition leads to reduced bone marrow fibrosis, splenomegaly, and improved overall survival in MF mouse models with minimal effect on platelet count.

- **TP-3654 is an oral selective PIM1 kinase inhibitor**
 - Dose escalation is ongoing and TP-3654 appears to be well tolerated, no DLT to date, and the most common AE are Grade 1 GI toxicities that resolved in 1-2 weeks.
 - Preliminary signs of clinical activity include spleen volume reduction, symptom improvement, and broad cytokine reduction.

- Enrollment is ongoing as monotherapy and current data support the development of TP-3654 as potential partner combination with JAK inhibitors given preliminary activity signals observed and the lack of cytopenia.