Our Pipeline

Sumitomo Pharma Oncology (SMP Oncology) is committed to advancing translational research on novel pathways in order to develop meaningful medicines for patients with cancer.

Loading content


  • *Ombipepimut-S Emulsion (DSP-7888) is also known as adegramotide/nelatimotide.
  • Active, not recruiting.


  • Mechanism of action graphics are for illustrative purposes only
  • Additional, ongoing clinical trials conducted in Japan by Sumitomo Pharma Co., Ltd., are not listed on this website. For information about these trials, please visit https://www.sumitomo-pharma.co.jp/rd/clinical/pipeline
  • All development candidates are investigational agents, and their safety and efficacy have not been established. There is no guarantee that any of these agents will receive health authority approval or become commercially available in any country for the uses being investigated
  • For additional information on clinical studies, including studies that are actively recruiting, please see www.clinicaltrials.gov or contact us


ACVR1=activin A receptor type 1; AML=acute myeloid leukemia; AXL=member of the Tyro3-Axl-Mer (TAM) subfamily; BMP=bone morphogenic protein; CDK=cyclin-dependent kinase; CTLA4=cytotoxic T-lymphocyte–associated protein 4; CTL=cytotoxic T lymphocyte; DIPG=diffuse intrinsic pontine glioma; EBP=emopamil-binding protein; GBM=glioblastoma multiforme; LXR=liver x receptor; MCL-1=myeloid-cell leukemia 1; MLL=mixed-lineage leukemia; NK cells=natural killer cells; PD1=programmed cell death protein 1; PIM=proviral integration site for Moloney murine leukemia virus; PK=pyruvate kinase; PKM2=pyruvate kinase M2 isoform; RTK=receptor tyrosine kinase; TLR=Toll-like receptor; TGF-β =transforming growth factor–beta; TNK=tyrosine kinase non-receptor; WT1=Wilms’ tumor 1.


  1. Goto M, Nakamura M, Suginobe N, et al. DSP-7888, a novel cocktail design of WT1 peptide vaccine, and its combinational immunotherapy with immune checkpoint-blocking antibody against PD-1. Blood. 2016;128(22):4715.
  2. Miyakoshi S, Usuki K, Masumura I, et al. Preliminary results from a phase 1/2 study of DSP-7888, a novel WT1 peptide-based vaccine, in patients with myelodysplastic syndrome (MDS). Blood. 2016. 2016:128(22):4715.
  3. Qi XW, Zhang F, Wu H, et al. Wilms' tumor 1 (WT1) expression and prognosis in solid cancer patients: a systematic review and meta-analysis. Sci Rep. 2015;5(8924).
  4. Oji Y, Suzuki T, Nakano Y, et al. Overexpression of the Wilms’ tumor gene WT1 in primary astrocytic tumors. Cancer Sci. 2004;95(10):822-827.
  5. Chidambaram A, Fillmore HL, Van Meter TE, Dumur CI, Broaddus WC. Novel report of expression and function of CD97 in malignant gliomas: correlation with Wilms tumor 1 expression and glioma cell invasiveness. J Neurosurg. 2012;116(4):843-853.
  6. Kijima N, Hosen N, Kagawa N, et al. Wilms’ tumor 1 is involved in tumorigenicity of glioblastoma by regulating cell proliferation and apoptosis. Anticancer Res. 2014;34(1):61-67.
  7. Oka Y, Tsuboi A, Oji Y, Kawase I, Sugiyama H. WT1 peptide vaccine for the treatment of cancer. Curr Opin Immunol. 2008;20(2):211-220.
  8. Spira A, Hansen AR, Harb WA, et al. Multicenter, open-label, phase I study of DSP-7888 dosing emulsion in patients with advanced malignancies [published online ahead of print, May 3, 2021]. Target Oncol. May 3, 2021. doi:10.1007/s11523-021-00813-6.
  9. Park IK, Mundy-Bosse B, Whitman SP, et al. Receptor tyrosine kinase Axl is required for resistance of leukemic cells to FLT3-targeted therapy in acute myeloid leukemia. Leukemia. 2015;29(12):2382-2389.
  10. Soh KK, Kim W, Lee YS, et al. Abstract 235: AXL inhibition leads to a reversal of a mesenchymal phenotype sensitizing cancer cells to targeted agents and immune-oncology therapies. Exp Mol Ther. 2016;76(14 suppl).
  11. Brand T, Lida M, Stein A, et al. AXL is a logical molecular target in head and neck squamos cell carcinoma. Clin Cancer Res. 2015;21(11):2601-2616.
  12. Rankin E, Giacca A. The receptor tyrosine kinase AXL in cancer progression. Cancers (Basel). 2016;8(103).
  13. Soh KK, Bahr BL, Bearss JJ, et al. Inhibition of Axl kinase reverses the mesenchymal phenotype in leukemic cells through the disruption of retinoic signaling [Abstract]. Blood. 2015;126:3253.
  14. Ota Y, Otsubo T, Koroki J, et al. Novel intravenous injectable TLR7 agonist, DSP-0509, synergistically enhanced antitumor immune responses in combination with anti-PD-1 antibody [Abstract 4726]. Cancer Res. 2018. doi:10.1158/1538-7445.AM2018-4726.
  15. Du B, Jiang Q, Cleveland J, Liu B, Zhang D. Targeting toll-like receptors against cancer. J Cancer Metastasis Treat. 2016;2:463-470.
  16. Chi H, Li C, Zhao FS, et al. Anti-tumor activity of toll-like receptor 7 agonists. Front Pharmacol. 2017;8:304. doi:10.3389/fphar.2017.00304.
  17. Herbertz S, Sawyer JS, Stauber AJ, et al. Clinical development of galunisterib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015;9:4479-4499.
  18. Bach DH, Park HJ, Lee SK. The dual role of bone morphogenetic proteins in cancer. Mol Ther Oncolytics. 2017;8:1-13.
  19. Buczkowicz P, Hoeman C, Rakopoulos P, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1. Nat Genet. 2014;46(5):451-456.
  20. Taylor K, Mackay A, Truffaux N, et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet. 2014;46(5):457-461.
  21. Zhao B, Pritchard J. Inherited disease genetics improves the identification of cancer-associated genes. PLOS Genet. 2016;12(6):e1006081.
  22. Valer JA, Sánchez-de-Diego C, Pimenta-Lopes C, Rosa JL, Ventura F. ACVR1 function in health and disease. Cells. 2019;8(11):1366.
  23. Peterson P, Whatcott C, Siddiqui-Jain A, et al. TP-0184 inhibits ALK2/ACVR1, decreases hepcidin levels, and demonstrates activity in preclinical mouse models of functional iron deficiency. Blood. 2017;13(suppl 1):937.
  24. Zhou L, Nguyen AN, Sohal D, et al. Inhibition of the TGF-beta receptor I kinase promotes hematopoiesis in MDS. Blood. 2008;112(8):3434-3443.
  25. Peterson P, Kim W, Haws H, et al. The ALK-2 inhibitor, TP-0184, demonstrates high distribution to the liver contributing to significant preclinical efficacy in mouse models of anemia of chronic disease [Abstract]. Blood. 2016;128:263.
  26. Cierpicki T, Grembecka J. Challenges and opportunities in targeting the menin-MLL Interaction. Future Med Chem. 2014; 6(4):447-462. doi:10.4155/fmc.13.214.
  27. Matkar S, Thiel A, Hua X. Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem Sci. 2013; 38(8):394-402. doi:10.1016/j.tibs.2013.05.005.
  28. Yokoyama A, Somervaille, Smith KS, et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell. 2005;123:207-218. doi:10.1016/j.cell.2005.09.025.
  29. Grembecka J, He S, Shi A, et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol. 2012; 8(3): 277-284. doi:10.1038/nchembio.773.
  30. Kuhn MWM, Song E, Feng Z, et al. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. Cancer Discov. 2016; 6(10):1166-1181. doi:10.1158/2159-8290.CD-16-0237.
  31. Slany RK. When epigenetics kills: MLL fusion proteins in leukemia. Hematol Oncol. 2005;1-9. doi: 10.1002/hon.739.
  32. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209-2221. doi: 10.1056/NEJMoa1516192.
  33. Zeisig BB, Milne T, Garcia-Cuellar M-P, et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol. 2004; 2(2):617-628. doi:10.1128/MCB.24.2.617–628.2004.
  34. Orlovsky K, Kalinkovich A, Rozovskaia T, et al. Down-regulation of homeobox genes MEIS1 and HOXA in MLL-rearranged acute leukemia impairs engraftment and reduces proliferation. PNAS. 2011;108(19):7956-7961.
  35. Kim W, Haws H, Peterson P, et al. TP-1287, an oral prodrug of the cyclin-dependent kinase-9 inhibitor alvocidib [Abstract 5133]. Cancer Res. 2017;77(12 suppl). doi:10.1158/1538-7445.AM2017-5133.
  36. Yin T, Lallena MJ, Kreklau EL, et al. A novel inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol Cancer Ther. 2014;13(6):1442-1456. doi:10.1158/1535-7163.MCT-13-0849.
  37. Boffo S, Damato A, Alfano L, Giordano A. CDK9 inhibitors in acute myeloid leukemia. J Exp Clin Cancer Res. 2018;37(1):36.
  38. Huang H, Weng H, Zhou H, Qu L. Attacking c-Myc: targeted and combined therapies for cancer. Curr Pharm Des. 2014;20(42):6543-6554.
  39. Chen R, Keating MJ, Gandhi V, Plunkett W. Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood. 2005;106(7):2513-2519.
  40. George B, Richards D, Edenfield W, et al. A phase I, first-in-human, open-label, dose escalation, safety, pharmacokinetic, and pharmacodynamic study of oral TP-1287 administered daily to patients with advanced solid tumors. Poster presented at: ASCO 2020; May 29-31, 2020; Digital.
  41. Foulks JM, Carpenter KJ, Luo B, et al. A small-molecule inhibitor of PIM kinases as a potential treatment for urothelial carcinomas. Neoplasia. 2014;16(5):403-412.
  42. Nath D, Yang Y, Dutta A, Whatcott C. The PIM kinase inhibitor TP-3654 in combination with ruxolitinib exhibits marked improvement of myelofibrosis in murine models. Blood. 2018. doi:10.1182/blood-2018-99-119421.
  43. Garrido-Laguna I, Dillon P, Anthony S, et al. A phase I, first-in-human, open-label, dose escalation, safety, pharmacokinetic, and pharmacodynamic study or oral TP-3654 administered daily for 28 days to patients with advanced solid tumors. Posters presented at: ASCO 2020;May 29-31; Digital.
  44. Pathi S, Peterson P, Mangelson R, et al. PKM2 activation modulates metabolism and enhances immune response in solid tumor models [Abstract B080]. Mol Can Ther. 2019.
  45. Zahra K, Dey T, Ashish, Mishra SP, Pandey U. Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis. Front Oncol. 2020;10:159. doi:103389/fonc.2020.00159.
  46. He X, Du S, Lei T, et al. PKM2 in carcinogenesis and oncotherapy. Oncotarget. 2017;8(66):110656-110670.
  47. Long T, Hassan A, Thompson BM, McDonald JG, Wang J, LI X. Structural basis for human sterol isomerase in cholesterol biosynthesis and multidrug recognition. Nat Commun. 2019;10(1):2452.
  48. Yang C, McDonald JG, Patel A, et al. Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands. J Biol Chem. 2006;281(38):27816-27826.
  49. Dong F, Mo Z, Eid W, Courtney KC, Zha X. Akt inhibition promotes ABCA1-mediated cholesterol efflux to apoA-1 through suppressing mTORC1. PLOS ONE. 2014;9(11):e113789.
  50. Segala G, David M, de Medina P, et al. Dendrogenin A drives LXR to trigger lethal autophagy in cancers. Nat Commun. 2017;8(1):1903.
  51. Kimbung S, Lettiero B, Feldt M, Bosch A, Borgquist S. High expression of cholesterol biosynthesis genes is associated with resistance to statin treatment and inferior survival in breast cancer. Oncotarget. 2016;7(37):59640-59651.
  52. Gabitova L, Gorin A, Astsaturov I. Molecular pathways: sterols and receptor signaling in cancer. Clin Cancer Res. 2013;19(23):6344-6350.
  53. Ehmsen S, Pedersen MH, Wang G, et al. Increased cholesterol biosynthesis is a key characteristic of breast cancer stem cells influencing patient outcome. Cell Rep. 2019;27(13):3927-3938.e6.
  54. Kambach DM, Halim AG, Cauer AS, et al. Disabled cell density sensing leads to dysregulated cholesterol synthesis in glioblastoma. Oncotarget. 2017;8(9):14860-14875.